September 20, 2023

In order to ensure focus on opportunities to innovate our product portfolio and continue delivering sustainable value to our customers, the changes identified below will be made to the Tregaskiss® 600 amp robotic water-cooled MIG gun offering effective September 29, 2023.

Physical changes to the product:

The gun housing of 600 amp robotic water-cooled MIG guns not equipped with wire brake will feature a wire brake plug (part number RW16-WBP). This change will also allow customers to install wire brake at a later date with the appropriate wire brake kit without having to change the gun housing.

There will be no change to MIG guns equipped with wire brake.

Changes to configurable options:

Additionally, due to low demand, please note that all 45-degree neck and 0.035” (0.9 mm) wire size options will be removed from the 600 amp robotic water-cooled MIG gun configurator.

If you have questions or need assistance with regard to these changes, please contact your local ITW welding sales representative.

Self-Shielded MIG Gun Performance

Self-Shielded MIG Gun Performance

Estimated reading time: 5 minutes

IronPro Self-Shielded MIG Gun

Self-shielded flux-cored welding is frequently used for structural construction and other jobsite welding since it offers a significant productivity advantage compared to stick welding. 

Welders using this process are likely holding their welding guns for much of the day, and they may be standing on elevated girders or lifts trying to get into tight places to complete a weld. Because of this, it’s important to choose a self-shielded flux-cored gun that is comfortable, lightweight and maneuverable to help get work done efficiently. 

Here are several key factors to consider when selecting a self-shielded flux-cored welding gun and tips for properly maintaining it to optimize performance. 

1. Flux-Cored MIG Gun Options

Not every welding gun fits every application. They come in various amperages and configurations, with features that include heat shields, configurable necks and adjustable cable lengths. The key is finding a flux-cored gun that works for each welder, since many options come down to operator preference. 

2. Amperage

Guns rated at 350 or 450 amps are common in structural field welding applications. Guns rated at 600 amps are also available but used less often due to being heavier. It’s important to avoid undersizing the welding gun since it can lead to overheating and other problems.

When selecting the gun amperage, consider the wire sizes that will be used most often. Typical wire sizes for a 350-amp gun are 1/16 inch and smaller. Wire sizes for 450-amp guns are 0.72 inch and larger, including 5/64 and 3/32 inch. 

3. Replaceable or Fixed Cable Liners

Some self-shielded flux-cored guns are available with either a replaceable cable liner or a fixed cable liner. The demanding environments where self-shielded flux-cored welding takes place can be hard on the gun and consumables, so replaceable liners provide benefits. They offer quick and easy cable maintenance and can extend product life, since welders can change out components that have high levels of wear. Guns with replaceable liners also tend to have a lighter weight cable and provide more flexibility to weld around edges or corners. 

Guns with fixed cable liners are often larger, which can be an issue when welding in tight spaces. The cables are also typically stiffer and more rigid, so they can take more abuse. Once a fixed cable liner has reached the end of its useful life, the entire gun must be replaced.

4. Necks

Gun necks are available in varying lengths and bend angles. The choice for the application often comes down to operator preference or weld joint access and configuration. 

A slimmer neck provides a better view of the weld pool and improved access to tight areas. A shorter neck typically provides more control compared to a longer neck. Still, operators may prefer a longer neck to increase the distance between themselves and the heat of the weld puddle — especially in higher amperage applications. 

Keep in mind that lightweight, rotatable necks help reduce operator fatigue by aiding with posture and positioning, and they improve weld visibility. 

5. Trigger

In the field, triggers that get wet or covered in dirt still need to work, so it’s important to purchase a quality gun that includes a durable trigger. Look for a gun with an enclosed trigger. This protects the contacts inside a housing, so the trigger is less prone to wear and breakage. If you’re using a replaceable cable liner, it may have an internal or external trigger lead. Be aware that external trigger leads may require more maintenance because they can easily get snagged or catch on things like bolt heads. However, they are typically quick and easy to replace. 

Dura-Flux self-shielded flux-cored gun with replaceable power cable liner

6. Handle

A handle needs to be rugged and durable for the jobsite, but it should also feel comfortable in the operator’s hand.

A self-shielded flux-cored gun with an optional dual schedule switch allows for wire speed adjustment while welding. In some guns, this switch is integrated into the handle to keep it protected from spatter. The ability to toggle between weld parameters easily—without having to stop welding and change settings—saves time and improves productivity.

The Best Results

Beyond choosing the right gun for the job, it’s also important to use and maintain it properly. Consider these tips for optimizing gun performance.

Store and handle it properly: Jobsites can be dusty, dirty places. Be sure to store guns and cables properly when not in use. Roll the cables up and put the gun away in a clean, dry place so there’s less risk it will be damaged. 

Maintain it as needed: Keep the gun and all components clean and check all connections periodically. Loose connections can cause electrical resistance and heat buildup, which can result in premature wear. Take the time to regularly blow out the liner with clean, compressed air to remove dirt and debris. Immediately address any damage to the gun components with maintenance or replacement. 

Invest in quality consumables: Consumable choice often comes down to cost or operator preference. However, investing in high-quality consumables can help extend the life of the gun, provide better performance and reduce downtime for changeover. 

Closing Thoughts

The self-shielded flux-cored process can deliver significant benefits for productivity and efficiency. Choosing the right gun and components—and maintaining them properly—plays a key role in optimizing your results.

Written by Stephen Bennett (, Mechanical Engineer, Bernard, Republished with permission from Modern Contractor Solutions (August, 2023)



September 5, 2023

Effective September 29, 2023, the 350 amp MA1 fixed automatic MIG gun will be removed from the Tregaskiss product portfolio and will be replaced with the existing equivalent 385 amp MA1 fixed automatic model. This initiative allows us to focus on delivering our best quality solution to our customers.

The only differences between the 350 amp and the 385 amp models are as follows:

  • The outside diameter of the 385-amp cable is 0.1” larger than the 350-amp cable
  • The length of the rear spring strain relief on the 385-amp model is 4.64” shorter than on the 350-amp model
  • The outside diameter of the rear spring strain relief on the 385-amp model is 0.19” larger than on the 350-amp model
Dimension drawing showing the difference between MA1 385A and MA1 350A

Affected Part Numbers:

  • All fixed automatic MIG gun part numbers beginning with MA15

Replacement Gun Options:

  • The 385 amp model is available as a direct replacement by simply changing the “MA15” prefix in your configured gun part number to “MA16”

If you have any questions or need assistance with regard to these changes, please contact your local ITW sales representative.

Best Practices For Weld Cell Layout

Best Practices For Weld Cell Layout

Today, even the smallest weld shops are making the jump to robotics, and even the largest, highly automated OEMs likely have semiautomatic weld cells for repairs or for welding parts that don’t lend themselves to automation. In automotive manufacturing, these manual cells may be midway through the line for welding frames or at the end for minor rework. If you’re in heavy equipment manufacturing, you might automate multipass welding on thick parts and reserve semiautomatic welding for tacking the parts or adding specialized components.

Welder using a teach pendant to program a welding robot

No matter your industry or your level of welding automation, an effective weld cell layout can help. Work needs to flow in an orderly fashion. Power, grounding, and wire feed cables need to be properly managed. And, of course, you need to ensure welders can work safely, consistently, and with good ergonomics. Proper layout supports high productivity and quality, along with cost savings.

The Big Picture

Whether robotic or semiautomatic, a well-designed weld cell makes efficient use of available space, where every component—the power source, welding gun, weld table, cables—ensures parts can be produced with little interruption. Streamlining workflow is a good first step. This involves setting up equipment in a way that helps operators avoid handling parts multiple times. Double handling of parts adds non-value-added seconds to the overall manufacturing cycle time and reduces the capacity for completed parts sent out the door. Think with an assembly line mentality.

Look beyond the weld cell to how parts are being delivered. For example, when an operation requires that parts receive semiautomatic tack welds before robotic welding, work must flow at a consistent pace to prevent the welding robot from sitting idle. To ensure a steady supply of parts and prevent bottlenecks, the cell should have a single point of entry. For optimal workflow, parts should move out of the weld cell in the same direction.

Minimize the distance a part needs to travel by keeping assembly points close together. Weld cells contributing to the completion of a single weld assembly should be in the same area of the facility. This proximity not only reduces time for moving a part, but it also lessens the number of footsteps operators need to make. Excessive movement in a welding cell is considered non-value-added work.

If you notice bottlenecks or operators or welding robots standing idle, or operators walking too far between weld cells, you might consider performing an audit. Any idle operation results in a failure to capitalize on the investment of that process. An audit can help you identify the causes behind these problems and implement solutions. The aim is to balance out the operations so that every aspect contributes to value-added work and high productivity.

The Semi-Automatic Weld Cell

Welding ergonomics are at the center of a semiautomatic welding cell layout. A more comfortable, healthier welding operator is a more productive one. Setting up the weld cell in a way that minimizes the need to reach repetitively or move awkwardly can reduce the risk of work-related musculoskeletal disorders.

Try to position the workbench or workpiece between the welding operator’s waist and shoulders, since this promotes a neutral posture that reduces stress on the body. When welding large components, use positioners or weld tables that move or rotate the part to the correct height and angle.

The same holds true when providing operators with a MIG gun that suits them, whether it be a curved or straight handle. Locking triggers help support comfort, as do rubber mats to stand on.

Strategically locating the power source and wire feeder can make the cell more efficient. Keep the two pieces of equipment as close as possible, so the operator can easily access them. Close proximity allows for shorter power cables for smoother wire feeding and also reduces electrical resistance drops so welding parameters remain more consistent.

Keep ground cable connections to a minimum. Some companies string together welding cables between weld cells for the same power source. This practice is inefficient, however, and can lead to problems. The multiple junctions can wear out easily, which causes electrical resistance and poor weld quality over time. The electrical resistance also can shorten consumable life, resulting in erratic arcs and burnbacks, leading to more downtime for contact tip changeovers.

The Robotic Weld Cell Layout

Implementing an effective robotic welding cell layout requires careful planning and attention to detail. One of the best approaches is to test the layout through virtual modeling or 3D simulation. These software programs can simulate the welding gun configuration—neck length, nozzle, and mounting (solid versus clutch)—to ensure it will operate properly within the work envelope. They also consider weld sequencing, robot arm movement, fixturing, and the parts to be welded so that you can be confident everything will work as planned.

Take the time to simulate the weld cell layout and process before equipment integration to avoid issues once the welding robot is in service. Simulations help prevent downtime during mass production for troubleshooting and potential expenses for revamping tooling or replacing components.

They also can model another key factor—welding robot reach. Be sure to match the size of the part with the reach of the robot. The robot must be able to reach all weld joints on the part; otherwise, you might need multiple robots for the application. A single, small welding robot won’t suffice for welding on a large part. If you have a weld on the edge of the reach envelope, you might not be able to achieve the optimal welding gun angle to create quality welds. This can add costs for rework, and you’ll likely need to replace stretched power cables that fail prematurely.

Regarding tooling, you might be tempted to purchase less expensive options—though such tooling might not have the features you need, such as the appropriate number of clamps or location pins. This can lead to inconsistent part fit-up or locating that requires multiple passes to fill the weld joint, adding to cycle time. You might experience more downtime as you reprogram the welding robot to accommodate the gaps, or you may end up needing to invest in touch sensing to locate the joint. Even worse, you might need to upgrade your tooling after the initial design phase—a costly step.

Also consider the positioners. Their size and weight capacity must account for both the weight of the part and the tooling. Design the robotic cell for the heaviest part to be welded.

Where you place the power source and wire feeder matters as they both impact power cable management and grounding. If space is at a premium, you may want to place the welding power source above the robot cell on a mezzanine. This way, you can run the power cable and ground leads down channels in the cell’s back wall directly to the tooling and welding robot.

These leads are stationary—except for the ones on the robot, so be sure to account for the robot’s air movements to minimize wear on the cables. Placing a junction power block at the base of the robot and running a high-flex power cable from that base up to the wire feeder can help save time in repairs, and it can save money. If the high-flex cable becomes worn, you just replace that shorter piece instead of the entire cable. The same approach works for the grounding leads.

Finally, determine the best location for the nozzle cleaning station or reamer. This peripheral cleans the nozzle of spatter during routine pauses in welding. It helps extend consumable life and reduces downtime for changeover.

The reamer needs to be close enough for the robotic welding gun to engage fully for the ream cycle. If you’re operating two robots close together, you can program them both to use the same reamer. Avoid mounting the reamer anywhere but a flat surface, since positioning it at an angle can cause anti-spatter to leak over equipment or fixtures.

Avoid interrupting the weld cycle by cleaning the nozzle during robot idle time. For example, consider cleaning the nozzles while parts are being transferred in and out of the fixture or while components are being loaded into a weld cell.

Small Moves, Big Impact

If you’re experiencing bottlenecks or missing productivity or quality goals, take a look at the welding cell layout. In a semiautomatic setup, never overlook welder comfort and safety. In a robot cell, moving power cables, power sources, wire feeders, or anything else can change how much that cell can produce over a shift.

The little things matter, and missing just one detail can snowball into bigger problems down the road. Small changes can make a big impact on the efficiency you can achieve.

Written by Justin Craft (, Field Technical Services Specialist, Tregaskiss and Bernard, Republished with permission from The Fabricator (August, 2023).

Proper Robotic Welding Gun Configuration

Proper Robotic Welding Gun Configuration

Estimated reading time: 6 minutes

The welding gun is a vital piece of equipment in a robotic welding system, serving as the conduit for the welding wire, gas, and power. However, it can sometimes be an afterthought when companies implement an automated welding solution. Unfortunately, this oversight can lead to a host of problems, not to mention frustration. That is especially true for first-time users making the investment.

TOUGH GUN TA3 robotic air-cooled MIG gun installed on robot
The welding gun is a vital piece of equipment in a robotic welding system, serving as the conduit for the welding wire, gas and power.

The wrong robotic welding gun can also cause issues for those more experienced with robotic systems. It’s not uncommon for companies to purchase the same gun for a new robot and tooling when, in fact, it may not be the best option.

Companies also need to determine their welding amperage and arc-on requirements for the application. This ensures that they purchase a robotic welding gun with the proper duty cycle — the amount of welding that can occur at a rated output over a period without causing damage to the gun.

Robotic welding guns are available in a variety of ratings, including air-cooled models that operate at 350 or 385 A at 100% duty cycle.

Today, most robotic welding systems are through-arm models in which the power cable runs through the casting of the robot arm. As a first step in configuring a robotic welding gun for these systems, it’s important to know the make and model of the robot, power source, and wire feeder. Each equipment manufacturer has a different interface that dictates how each piece of equipment connects with one another.

There are higher amperage water-cooled options, which are typically 400 A and above, available in the marketplace. Some of these may be rated at 100% duty cycle, while others are rated at 60%. Don’t be fooled by high amperage unless it’s at 100% duty cycle.

Hybrid options are available for companies that want the simpler construction of an air-cooled robotic welding gun with the added cooling capacity of a water-cooled one. These guns have external water lines that circulate water around the nozzle to keep the front-end consumables cooler.

For a robotic welding gun to access the weld joints, it’s critical that the work envelope is adequate. Companies need to consider not just the size of the gun but also the space that is available when the tooling, fixtures, and parts are all in place. Joint design and weld sequencing also factor into the equation. It’s important that there is room and time for the welding gun to weld the joints in a sequence that keeps heat to a minimum. Companies should avoid heat soaking the parts, so they don’t become distorted.

TOUGH GUN I.C.E. technology installed on TOUGH GUN CA3 robotic air-cooled MIG gun
Hybrid options are available for companies that want the simpler construction of an air-cooled robotic welding gun with the added capacity of a water-cooled one.

A robot integrator can conduct a 3D simulation using models provided by the robotic welding gun manufacturer through computer-aided design (CAD) to make sure the gun and neck have the proper access and reach within the given space. The CAD model can also show whether the selected gun has the correct tool center point (TCP) and can extend to the nozzle cleaning station for reaming or to a service window for consumable changeover. A service window supports safety in the operation by eliminating the need for an employee to physically enter the cell.

Configuring the Gun

Some robotic welding gun manufacturers offer online configurators that allow companies to customize the equipment for their exact application. These configurators guide the user through a step-by-step process, providing options to choose from for each component. With or without this tool, companies need to consider what their needs are based on their upfront assessment.

Gun mount: There are two mounting options for a robotic welding gun to protect it in the event of a collision — a solid arm mount and a clutch. If the robot or end user’s safety procedure requires external collision detection, a clutch can be added to the system. This component functions both mechanically and electrically by recognizing a collision and sending a message to the robot controller to stop the system. If procedures allow for reliance on only the robot’s collision detection, then a solid mount will suffice. 

Neck: The neck length and angle must provide the approach angle to weld parts properly and to allow for smooth wire feeding. Standard neck angles are 22, 45, and 180 deg. Through-arm robots generally use a 45-deg neck; however, that should be verified with the CAD model/simulation before implementing. Companies will also need to take into consideration the welding wire they are using. For example, aluminum wire requires a straighter neck to feed through properly since it is so soft.

Welding cable: For through-arm robots, the make and model dictate the cable length. For conventional robots (where the cable assembly runs outside the robot arm), the gun cable length also depends on the robot make and model along with the location of the feeder. It may be remotely mounted or mounted on the robot itself. There is more flexibility with cable length for these robots, but it’s important not to use too long of a cable since this can lead to wire-feeding issues. Conversely, a cable that is too short can stretch and break down quickly.

Product image of AccuLock R consumables including nozzles, contact tips, gas diffusers
Tregaskiss® AccuLock™ R Consumables shown

Welding consumables: When choosing contact tips for the robotic welding gun, look at the welding process. Pulsed gas metal arc welding (GMAW-P), for example, is quite hard on contact tips due to its high-frequency waveforms. This process requires a harder tip or a contact tip specifically designed for pulsed welding.

The chosen nozzle needs to allow proper access to the weld joint. A tapered nozzle works well when using smaller-diameter wire and contact tips. Higher-premium consumables are a good choice since these last longer and reduce downtime and labor for changeover.

Welding supervisors and operators should schedule time to perform preventive maintenance, such as checking connections and visually inspecting consumables for spatter, during routine pauses in welding.

Family of three QUICK LOAD liners with liner retainers
Tregaskiss® QUICK LOAD® Liners shown

Liners are another factor to consider, and the welding wire being used affects the choice. Flux- and metal-cored wires tend to be stiffer and harder to feed than solid wires. They require an extra-heavy-duty liner to support the wire and gain smooth feedability as it moves toward the contact tip. A D-wound galvanized wire works well. Companies can also use this liner for solid wire with good success.

Maintaining Efficiency

Companies invest in robotic welding systems to increase quality, productivity, and cost savings through a fast, repeatable process. To gain those benefits, every part of the system needs to be functioning optimally. Ensuring that the robotic welding gun has been configured properly before implementing the system can prevent downtime and extra expenses.

This article was written by Ryan Lizotte (project manager, Tregaskiss, Windsor, Ontario, Canada) for the American Welding Society.

MIG Welding FAQ: Best Practices for MIG Success

MIG Welding FAQ: Best Practices for MIG Success

Estimated reading time: 6 minutes

MIG is the most frequently used welding process in general manufacturing and fabrication, thanks to its ease of use, versatility, and productivity benefits.

Welder welding with a Bernard semi-automatic MIG gun with T-series handle.

While MIG is widely used, some operations may still run into issues that require troubleshooting. Understanding the basics of MIG welding and following best practices for operator technique as well as gas and consumable selection can help optimize results with the process. 

Q: What are the main advantages of MIG welding?

MIG offers productivity benefits when compared to some other welding processes such as TIG and Stick, thanks to its higher travel speeds and deposition rates. MIG is also considered easier for new welders to learn, so it can be a good option for operations that struggle to find skilled welders.

MIG could be utilized with either solid filler wires or tubular wires such as Metal Cored and when used with Flux Cored wires it is referred to as Flux Cored welding. Tubular wires in general can be run at higher speeds and deposit more weld metal, so they even offer higher productivity gains than Solid wires.

Q: What are the differences between MIG and TIG welding?

There are many factors to consider when choosing the right welding process for your application. These include base material type and thickness, weld appearance requirements, productivity requirements, the welding environment and available skilled labor.

TIG welding is generally used in niche applications, such as those that require high-precision welds or extremely high aesthetic quality. TIG is frequently used with special-grade materials like titanium or stainless steel. In comparison, MIG can be used in higher production applications where increased throughput is important, and it’s a good option for a wide variety of metals.

A typical travel speed in TIG welding is 4-6 inches per minute. With MIG welding, travel speeds are much higher; 6 inches per minute are considered slow, and 15 to 20 inches per minute are common. Deposition rates are also much higher with MIG welding. 

Regarding training, TIG is considered the most difficult welding process to learn and master since it uses both hands. An operator may take a few months to become proficient in TIG, while a new welder could be proficient in MIG within a week or two.

Q: What is the right shielding gas for MIG welding?

Shielding gas plays an important role in determining weld penetration profiles, arc stability, mechanical properties of the finished weld, the transfer process you use and more.

The filler metal manufacturer often provides shielding gas recommendations for the type of wire being used, so it’s a good idea to first consult the wire specification sheet.

When using flux-cored wire, 100% CO2 or an 80/20 Argon/CO2 mix are common choices. When it comes to solid wire or metal-cored wire, the right gas is dependent on the transfer mode being used. A short-circuit transfer mode works with 100% CO2 gas in most cases but can still run on mixed gas. While using a pulse or spray transfer, a higher Argon content is needed, and an 80/20 Argon/CO2 is the right choice.

The base material also plays a role in choosing the right gas. Aluminum requires 100% argon, while stainless steel requires at least 98% argon.

Q: Which is better: a push or a pull technique?

The technique choice may come down to operator preference in most cases, but there are some best practices. For example, when welding aluminum, a push angle is generally better because it helps the cleaning action of the oxidation layer on aluminum, similarly uphill position, a push angle is good for visibility and penetration. While if you use Flux Cored wire to weld carbon steel then a pull angle is going to work better in this case to give enough time to the slag not to be entrapped in the weld metal.

Q: What is the proper wire stick-out?

Maintaining a proper stick-out is important to achieving the best results in MIG welding, a too-long or a too-short stick-out will affect the weld quality and appearance. A 3/8-inch stick-out is a good starting point, but operators can deviate from that based on preference, wire diameter and accessibility to the weld.

Q: What amperage MIG welding gun is needed?

To choose the right MIG welding gun, consider the specifics of the application. The wire feed speed and wire diameter are two of the most important factors in determining proper gun amperage. Are you welding heavy wall materials, like heavy equipment or heavy steel structures? Those jobs will likely require a high deposition, hence a high-amperage welding gun — such as an Air-cooled 400-amp gun with at least a 60%-80% duty cycle or above, and in some cases a water-cooled gun. If you weld lighter walls and shorter beads, you may consider a 200 to 300-amp gun. 

Welder welding with a Bernard semi-automatic MIG gun using a T series handle.
Consider the specifics of your application before choosing a MIG welding gun.

The most common amperage choice in the industry is a 300- to 400-amp, air-cooled MIG gun. This gun can address the majority of the MIG welding applications and can run the most common wire sizes such as 0.045” and 0.052”. 

A good starting point would also be the welding procedure in place that specifies the amperage needed for the weld, which would help in choosing the gun’s amperage. Another easy way is to match the welding machine amperage output, a 400-amp welder would run well with a 400-amp gun in most cases, but this might not be the most effective way to select the right amperage gun when compared to the other methods mentioned above.  

Q: How can an operation make consumables last longer?

Using the OEM consumables designed to be used with a specific MIG gun and welding system is important. Because these consumables are machined to very tight tolerances and go through high-quality measures which in turn is translated into higher quality welds and longer consumable life.

Be sure to choose a contact tip that is the appropriate size for the wire diameter — an oversized or undersized contact tip will wear faster and result in poor performance. In addition, follow the gun manufacturer’s recommendations for consumable installation and changeover, check connections regularly, install and trim to the right length, select the right nozzle material, size and recess/extension, and finally clean your consumables regularly and change them when needed.   

Written by Mostafa Hanafy ( , Market Segment Manager, Tregaskiss and Bernard. Republished with permission from Fabricating and Metalworking (August 2023).



image of welder holding a ALCSK-1 AccuLock Kit for Conventional liner
inside sticker of kit ALCSK-A

The AccuLock™ S for Conventional Liners starter kit (part number: ALCSK-1) is designed to help welders convert from their current BTB MIG gun consumables to AccuLock™ S consumables.

The kit contains everything needed for welders to swap their current nozzle, diffuser and contact tip with AccuLock™ S consumables with the ability to still use their existing conventional liner.


Beginning April 11, 2023 Bernard has begun re-installing consumables back onto all BTB semi-automatic MIG guns so that your MIG gun arrives ready to weld. Note that guns built before April 11, 2023 will not have the consumables installed out-of-the-box and the nozzle and tip will be within a bag inside of the box. This update applies to all MIG guns, including all Miller packages that have part numbers beginning in 951.

PRODUCT UPDATE – Tregaskiss TOUGH GUN® TT4 Reamer Robotic Nozzle Cleaning Station Online Configurator and Reverse Lookup Tools

PRODUCT UPDATE – Tregaskiss TOUGH GUN® TT4 Reamer Robotic Nozzle Cleaning Station Online Configurator and Reverse Lookup Tools

Tregaskiss introduces a new online configurator for its TOUGH GUN® TT4 reamer robotic nozzle cleaning stations. The new mobile-friendly configurator allows users to quickly and easily customize their analog or ethernet reamer for their exact application. Users simply follow a series of steps to configure a reamer model, first selecting the V-block and cutter blade to match the outside diameter (OD) and bore of their robotic MIG gun nozzle. Users can then select from various add-ons, including a wire cutter or nozzle detect. Tregaskiss also offers the option to choose accessories sold separately, such as a reamer stand, anti-spatter liquid and an anti-spatter multi-feed system.

After choosing all desired components, the configurator provides a summary of the selections, along with a part number for the reamer. Users can access downloadable replacement parts lists, exploded view diagrams and other valuable takeaways that they can print, save in PDF format for later, or share via email.

Along with the online configurator, a new reverse part number lookup function for Tregaskiss TOUGH GUN® TT4 reamer robotic nozzle cleaning stations is available. By entering a fully configured TOUGH GUN TT4 reamer part number, users get access to a downloadable detailed replacement parts list and other relevant resources specific to their configuration.

Users can visit to utilize this online configurator or reverse lookup function.

Product photo of the TOUGH GUN TT4 reamer with anti-spatter reservoir
TT4 Configurator link button to configurator
TT4 reverse lookup link button to configurator

PRODUCT CHANGE — AccuLock™ Conventional Liner Gas Diffusers

PRODUCT CHANGE — AccuLock™ S Conventional Liner Gas Diffusers — O-Ring Color Change to Gray

All AccuLock S conventional liner gas diffusers began shipping with a gray o-ring instead of a black o-ring on February 22, 2023. The gray o-ring makes it easier to tell the difference between an AccuLock S dual-locked liner gas diffuser and an AccuLock S conventional liner gas diffuser.

O Ring change on D-A1-C Diffuser

For reference, the AccuLock gas diffuser part numbers listed below will be assembled with a gray o-ring:

Part NumberDescription
D-A1-CAccuLock S Gas Diffuser, Large Nozzle, Thread-On, Conventional Liner
D-A2-CAccuLock S Gas Diffuser, Large Nozzle, Slip-On, Conventional Liner
DS-A1-CAccuLock S Gas Diffuser, Small Nozzle, Thread-On, Conventional Liner
DS-A2-CAccuLock S Gas Diffuser, Small Nozzle, Slip-On, Conventional Liner



Our product offering is regularly assessed to ensure focus on customer needs and opportunities to innovate our product portfolio, so we can continue to deliver sustainable value to our customers.

Starting 1/3/2023, there will be part number changes to the cone nut/end fitting found on Bernard BTB straight handle MIG guns with Hytrel polymer cable. Note that although the parts will look different, the functionality remains the same. These part number changes are also reflected in the current BTB MIG Gun Owners Manual.

Old cone nut and nuw cone nut on Bernard BTB Mig guns effective 1/3/2023
Current Part NumberNew Part Number Type
3081680087End Fitting
408T1680088End Fitting
4091540003Cone Nut
5091540004Cone Nut
608-11680089End Fitting
6091540004Cone Nut

Should you have any questions or need further assistance, please contact your local ITW representative.



August 1, 2022

Bernard has discontinued the sales of the Q150 semi-automatic air cooled MIG guns as of August 1, 2022.
Click here for a list of discontinued part numbers.

Replacement MIG gun options would be a configured Bernard® BTB 200 amp or TGX 180 amp MIG gun.

If you have any questions regarding this change, contact your local ITW representative.



July 26, 2022

In an effort to speed assembly time, we will stop installing the contact tip and nozzle on all MIG guns. Diffuser and liner will be installed.

  • Contact tip and nozzle will be packaged separately in a bag and shipped in the box with all Bernard® MIG guns
  • Refer to the Owner’s Manual provided in the MIG gun box for consumable installation instructions or visit our support page to locate your specific gun Owner’s Manual

Should you have any questions or need further assistance, please contact your local ITW representative.

PRODUCT UPDATE – AccuLock™ S Power Pin Cap Design Change

PRODUCT UPDATE — AccuLock™ S Power Pin Cap Design Change

The design of all AccuLock S power pin caps will be updated to allow retention of AccuLock S liners with a set screw instead of a rubber washer. This running change impacts Bernard® BTB MIG guns. It takes place on March 17, 2022.

All BTB MIG guns configured with AccuLock S consumables ordered and/or built after March 17, 2022 will include the new set screw. The same can be said for orders placed for replacement AccuLock S power pin caps.

Additional changes include:

  • Each size of AccuLock S power pin cap will have a visible gas sealing washer that is color matched to compatible liner shrink tube
  • Wire size compatibility will change for two AccuLock S liners:
Liner Part NumberFormer Wire Size CompatibilityNew Wire Size Compatibility
LA6A-XX5/64″ (2.0 mm) – 3/32″ (2.4 mm)5/64″ (2.0 mm)
LA7A-XX3/32″ (2.4 mm) – 7/64″ (2.8 mm)3/32″ (2.4 mm)

  • A new Euro power pin option (a two-piece assembly comprised of power pin and pass-through gun connector) will be offered when configuring Bernard BTB MIG guns with AccuLock S Consumables.

New design advantages include easier power pin cap installation, improved liner retention and simpler identification of compatible parts.
Additional considerations:

  • No change to how Bernard BTB MIG guns configured with AccuLock S consumables are ordered
  • T-handle hex wrench included with every Bernard BTB MIG gun configured with AccuLock S consumables
  • Extra set screw included with every Acculock S liner, can also be ordered separately
  • No change to the way Miller® MDX™ gun liners are retained at this time

For more information, refer to the AccuLock S consumables spec sheet. Additional how-to videos can also be found on S.

NEW PRODUCT — TOUGH GUN TT4A and TT4E Reamer Nozzle Cleaning Stations

September 1, 2021

NEW PRODUCT — TOUGH GUN® TT4A and TT4E Nozzle Cleaning Stations

We are pleased to announce the launch of the new TOUGH GUN® TT4A and TT4E reamer nozzle cleaning stations. Tregaskiss has enhanced the trusted dependability of our existing TOUGH GUN TT3 and TT3E reamers with superior performance, high durability components and new standard features. With increased uptime and weld quality, you’ll spend less time maintaining and troubleshooting your robotic welding equipment and more time getting product out the door.

TOUGH GUN TT4 Reamer - front view

These new reamers power through the toughest spatter with a .95HP motor and 236 lbs. of spindle lifting force at 95 psi. Their higher durability components help to keep your welding operation up and running for extended periods of time:

  • Powerful, lubricated motor lasts up to 18M cycles at 80+ psi
  • Durable valves and cylinders rated for 10M+ cycles
  • Wire cutter can run 1M+ cycles without requiring maintenance

Now included as standard are new features that help reduce downtime, safety incidents and costly weld defects related to anti-spatter:

  • A new anti-spatter reservoir with increased fluid capacity;
  • A new low fluid level indicator that sends a signal to the PLC / robot when anti-spatter is running low; and
  • A new spray containment unit that reduces risk of slip / trip hazards due to overspray contamination.

Discontinuation of TOUGH GUN® TT3 / TT3E Reamers

Tregaskiss will discontinue the sales of the TT3 and TT3E reamers beginning 09/01/2021. However, we will continue to offer TT3 / TT3E replacement parts for a period of five years (until 2026).

For assistance with converting your existing part number, please use our TOUGH GUN TT3 reamer online part number conversion tool.

If you have questions regarding your TT3 / TT3E reamer replacement parts, please contact our Customer Service team from 7:00 a.m. to 4:30 p.m. CST Monday through Friday:

Phone: 1-855-MIGWELD (644-9353) –

DISCONTINUED PRODUCTS — Select Elliptical Contact Tips

DISCONTINUED PRODUCTS — Select Elliptical Contact Tips

July 14, 2021

Effective June 30, 2021 (or when inventory is depleted), we will be discontinuing six (6) extremely low volume elliptical contact tips as part of an ongoing effort to improve our product offering and reduce complexity.

Part NumberDescription
1597Contact tip, elliptical, 1500 series, 0.023″ (0.6 mm)
1594Contact tip, elliptical, 1500 series, 7/64″ (2.8 mm)
1595Contact tip, elliptical, 1500 series, 1/8″ (3.2mm)
7494Contact tip, elliptical, 7400 series, 7/64″ (2.8 mm)
243Contact tip, elliptical, Pipeline, 0.030″ – 0.0.35″ (0.8 – 0.9 mm)
244Contact tip, elliptical, Pipeline 0.045″ (1.2 mm)

We recommend replacing these contact tips with compatible components from our complete lineup of AccuLock™ consumables: choose from AccuLock R or AccuLock S consumables, depending on product converted.

Please contact the Bernard and Tregaskiss Customer Service team by phone at 1.866.MIGWELD (644.9353) or email at for assistance making the appropriate replacement.

PRODUCT UPDATES — Select AccuLock™ Contact Tips and Diffusers Now Available in Quantities of 100 and 1000

PRODUCT UPDATES — Select AccuLock™ Contact Tips and Diffusers Now Available in Quantities of 100 and 1000

For the convenience of our customers, the most popular sizes of our copper AccuLock contact tips and AccuLock R diffusers are now available in larger quantity packaging.
Please reference the new part numbers in the chart below:

New 100 Pack Contact Tip Part NumbersNew 1000 Pack Contact Tip Part NumbersNew 100 Pack Diffuser Part Numbers

For more information, refer to the AccuLock S consumables or AccuLock R consumables spec sheets.